
 International Journal of Advanced and Applied Sciences, 5(11) 2018, Pages: 33-39

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

33

Efficient effort estimation of web based projects using neuro-web

Nosheen Qamar 1, *, Farwa Batool 2, Kashif Zafar 2

1Computer Science and Information Technology Department, University of Lahore, Lahore, Pakistan
2Computer Science Department, National University of Computer and Emerging Sciences, Lahore, Pakistan

A R T I C L E I N F O A B S T R A C T

Article history:
Received 16 May 2018
Received in revised form
29 August 2018
Accepted 2 September 2018

The effort estimation needs to be done at early stages for successful delivery
of software. Numerous models have been developed to estimate software
effort during the last decades, but effort estimation of a software project is
still a challenging task and in the case of web based projects, it is even
harder. The selection of programming language and use of different type of
objects i.e. hyperlinks, graphics, and scripts etc. make the web effort
estimation process really complex. An estimation model “WebMo”, proposed
to estimate the effort of web based projects inspired by COCOMO. This
research presents a non-algorithmic model named “Neuro-Web” based on
Artificial Neural Networks (ANN). The proposed model will use the WebMo
parameters as input. These parameters include web application size,
productivity coefficients, and 9 different cost drivers. This proposed model is
calibrated using the dataset of 164 real-life web applications developed by
different freelancers and software houses. The “Neuro-Web” model is
compared with the existing model “WebMo” and results reveal that Neuro-
Web performs better than “WebMo”. The MMRE of the proposed method is
just 9.92% as compared to 26.27% for WebMo.

Keywords:
Effort estimation
Neural networks
Software engineering
Web applications
Software planning

© 2018 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*Effort estimation of a project is a perplexed
activity that needs to be done at early stage of the
project development. It is the process of forecasting
the expected development cost and time. Correct
estimation is critically important as under-
estimation can results in low quality of the project
and eventually leads to the project failure. On the
other hand, the over-estimation of a project can be
source of business loss (Hill, 2010).

The software effort estimation can be performed
by algorithmic (Sharma, 2013) and non-algorithmic
methods. The algorithmic methods include COCOMO
model (Boehm, 1984), SLIM model (Putnam, 1978)
and Function Point based model (Sheta et al., 2008).
These methods use different type of parameters. The
parameter values are provided to mathematical
formulas to foresee software effort. The limitations
of these algorithmic methods include its source of
estimation (SRS document), inappropriate
measurement of project size and difficulty in
modeling the complex inherent relationships (Clark

* Corresponding Author.
Email Address: nqz786@gmail.com (N. Qamar)

https://doi.org/10.21833/ijaas.2018.11.004
2313-626X/© 2018 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

et al., 1998). Due to these deficiencies, the
researchers focused on non-algorithmic methods
based on Computational Intelligence i.e. Genetic
Algorithms (Singh and Misra, 2012), Fuzzy Logic
(Martin et al., 2005) and Artificial Neural Networks
(ANN) (Santani et al., 2014). The ANN has the
capability to learn from test data and produce output
like a human brain. It can also model the complex
relationships between dependent and independent
variables effectively (Briand and Wieczorek, 2002).

Along with traditional software, the effort
estimation of web based projects is also critically
important. The continuously increasing online retail
sales ($2,197 trillion in 2017) (Saleh, 2017) reflects
the importance of successful web development and
accurate effort estimation is the foundation of this
success. The demand of being quick-to-market
makes web development different from traditional
one. The other difference includes its complex
nature, small team size, use of multiple techniques
(scripts, API’s and graphics etc.) (Reifer, 2000) and
ad-hoc processes. Despite of these differences, a very
few models have been proposed to exclusively deal
with web based projects. One of those is WebMo,
proposed by Bohem (1984). This model uses the
Web Objects metric for effort estimation. The Web
Objects include; building blocks, web components,
graphics or multimedia files etc. (Reifer, 2000).

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:nqz786@gmail.com
https://doi.org/10.21833/ijaas.2018.11.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2018.11.004&domain=pdf&

Qamar et al /International Journal of Advanced and Applied Sciences, 5(11) 2018, Pages: 33-39

34

The above mentioned limitations of algorithmic
methods attracted us to look for non-algorithmic
methods to estimate effort of web based projects.
Very few researchers had attempted ANN for
estimation web based project. This motivated us to
propose a novel non-algorithmic model called
Neuro-Web. The model has been verified with the
help of 164 real life web based projects.

The remaining paper is structured as follows:
Section 2 discusses the Background, Section 3
describes the Literature Review, Section 4 discusses
the Proposed Methodology, Section 5 describes the
Experimental Setup, Section 6 presents the Results
and Analysis and finally the section 7 concludes the
paper with some future directions.

2. Background

2.1. WebMo model

Boehm (1984) introduced the WebMo model for
effort estimation of web based projects (Reifer,
2000). The WebMo model is derived from COCOMO;
a widely used model for effort estimation of
traditional projects. The core difference between
WebMo and COCOMO is number of cost drivers and
the sizing metrics. The COCOMO has 15 cost drivers
and WebMo deals with 9 cost drivers. The project
size is calculated in Source Lines of Code (SLOC) for
COCOMO whereas the WebMo uses the Web Objects
metric for size calculation. The Web Objects
includes; API’s, JavaScript Applet, Graphics,
Hyperlinks, application points, components or
multimedia files etc. The size of the project is

calculated with help of Halstead (1977)’s equation as
given below (see Eq. 1). The volume is computed to
calculate the size of web project (Halstead, 1977).

𝑉∗ = 𝑁𝑙𝑜𝑔2(𝑛) = (𝑁1∗ + 𝑁2∗)𝑙𝑜𝑔2(𝑛1∗ + 𝑛2∗) (1)

where, N is No. of occurrences of web objects and
operations on those web objects, n is No. of unique
web objects and operations, N1* is total occurrences
of web objects, N2* is total occurrences of operations
on web objects, n1* is No. of distinct web objects, n2*
is No. of distinct operations on web objects, and V* is
volume/size of the project.

Eq. 2 is used to calculate the effort (in person-
months) of the Web based project.

𝐸𝑓𝑓𝑜𝑟𝑡 = 𝐴 ∏ 𝑐𝑑𝑖(𝑆𝑖𝑧𝑒)𝑃19

𝑖=1 (2)

where, Size is Size as calculated from Halstead’s
equation, Cd is 9 cost drivers, A is constants, and P1
is power laws.

Table 1 contains the values of A and P1 for
different categories of web based projects. Table 2
describes the details of 9 cost drives. The value of
cost driver can be measured in an ordinal scale (Very
Low, Low, Nominal, High and Very High).

Table 1: Web Development Model Parameter Values

(Reifer, 2000)
Domains A P1

Web-based electronic 2.3 1.05
Financial/trading applications 2.7 1.05

Business-to-business applications 2.0 1.00
Web-based information utilities 2.1 1.00
*Either 0.5 or 0.33 depending on the scaling (>40 Web Objects)

Table 2: WebMoEffort Multipliers/Cost Drivers (Reifer, 2000)

Cost Driver VL L N H VH
Product Reliability and Complexity (RCPX) 0.63 0.85 1.0 1.30 1.67

Platform Difficulty (PDIF) 0.75 0.87 1.00 1.21 1.41
Personnel Capability (PERS) 1.55 1.35 1.00 0.75 0.58

Personnel Experience (PREX) 1.35 1.19 1.00 0.87 0.71
Facilities (FCIL) 1.35 1.13 1.00 0.85 0.68
Schedule (SCED) 1.35 1.15 1.00 1.05 1.10

Teamwork (TEAM) 1.45 1.31 1.00 1.75 1.62
Process Efficiency (PEFF) 1.35 1.20 1.00 0.85 0.65

Reuse (RUSE) - - 1.00 - -

2.2. Artificial neural networks

Artificial Neural Network (ANN) is a network
consists of artificial neurons (Richard, 1987). These
neurons are connected to each other with help of
connection links as shown in Fig. 1. Some weights
are associated with each connection. These weights
contain information about input signals which is
used to solve some specific problem. In ANN, the
nodes are organized in different layers. These layers
are consisted of input layer, hidden layer(s) and
output layer. The inputs need to be provided to each
neuron. Every neuron has its internal state called
activation level of neuron. The inputs with
aggregated weights, measured on some threshold
are provided to activation function to produce the
output of that neuron. A large number of activation
functions are used depending on nature of problem,

like Linear, Sigmoid, Gaussian, Tangent, Hyperbola,
Parabola etc.

Fig. 1: Artificial neural network basic model

The ANN needs to be trained like human brain. A

large number of algorithms exist for training
purpose of neural networks, but which algorithm
will best works for some artificial neural network,

Qamar et al /International Journal of Advanced and Applied Sciences, 5(11) 2018, Pages: 33-39

35

depends on the architecture of that network. The
most widely used topology or architecture of ANN is
the feed-forward neural networks (FFNN). The
information flows from input neurons to output
neurons and never goes in reverse direction in feed-
forward network. The intermediate layers called
hidden layers can be used to increase the
dimensionality of neural network (Richard, 1987).

3. Literature review

One of the important needs of software project
management is precise, consistent and accurate
prediction of resources. Researchers are working in
this direction from last twenty years but still many
challenges are associated with cost and effort
prediction (Bhatnagar et al., 2010).

The researchers more focus was on minimizing
the subjectivity of traditional software estimation
methods. A very few researchers took web based
project estimation under consideration. There are
different algorithmic, regression-based and
parametric models like COCOMO model (Boehm,
1984), SLIM’s model (Putnam, 1978) and Function
Point Analysis (Sheta et al., 2008) and Ordinal
Regression Model (Sentas et al., 2005) for traditional
software. There are also non-algorithmic techniques
exist for software effort estimation. These
techniques include; case base reasoning
(Mukhopadhyay et al., 1992), clustering (Zhong et al.,
2004), artificial neural networks (ANN) (Richard,
1987) and genetic algorithms (GA) (Martin et al.,
2005). Due to the successful application of genetic
algorithms (Qamar et al., 2018) and artificial neural
networks (Richard, 1987) in different domains (i.e.
medicine, geology, engineering, image processing,
physics, classification and control problems), It grabs
the attention of more researchers to use this for
software effort estimation and many researchers
used this in different areas of software project
management.

Tronto et al. (2008) and Bhuyan et al. (2014)
evaluated the use of artificial neural networks as
prediction of cost and effort in software project
management. Furthermore, Finnie et al. (1997)
reported that back propagation learning algorithm
on multilayer perceptron for software effort
prediction. Srinivasan and Fisher (1995) also used
multilayer perceptron for effort prediction on
COCOMO dataset.

Ruhe et al. (2003) used hybrid techniques for
web based projects estimation. He used small
dataset from industry. The multivariable regression
and expert judgment were the used techniques to
estimate effort. Later, Costagliola et al. (2006)
performed the comparison between two types of
web based measures for size estimation. Mendes
(2007) used Bayesian Network for effort estimation
and found it better than regression-based model.
Mendes (2007), further used Classification and
Regression Trees (CART) and case-based reasoning
(CBR) techniques for web based project estimation.
The WebMo model (Reifer, 2000) proposed by

Boehm (1984) was also used to estimate the effort of
web projects.

Reddy et al. (2007) proposed an approach for
web effort estimation using ANN in 2007. Later on,
Panda (2015) used artificial neural networks to
estimate effort of Agile and web based projects in
2015. The results showed that ANN performed
better than previous techniques. Recently,
Aghazadeh and Gharehchopogh (2018) proposed a
Hybrid model of Multi-layer Perceptron Artificial
Neural Network and Genetic Algorithms
in Web Design Management Based on CMS.

4. Proposed methodology

The WebMo is the algorithmic model which is
developed for web-based projects. We had rectified
this model in Multilayer Artificial Neural Network by
providing the parameters of WebMo model to the
ANN as input and estimated effort was measured by
training the ANN. A detailed comparison between
actual efforts, WebMo’s estimated and proposed
model’s (Neuro-Web) effort was conducted.

A Feed Forward Neural Network was designed
(as shown in Fig. 2) which is taking 9 cost drivers
and calculated size in its input neurons layer and
there are five neurons in hidden neuron layer and
one output neuron. The number of neurons in
hidden layer was selected after an iterative testing
process by keeping in view that more neuron can
cause the issue of over fitting.

Fig. 2: Architecture of ANN used for neuro-web model

The steps of Neuro-Web Model are given below:

Step 1: Get values against all cost drivers
Step 2: Initialize the weights, biases and number of nodes in
hidden layer.wi=whi=1; biasi=1
Step 3: Set learning rate α = 0.003
Step 4: Test stopping condition for false,
Repeat the steps 5 to 12
Step 5: For each training data,
Repeat the steps 6 to 12
Step 6: Compute the hidden layers Hiddenj = b1 +Σ Xi*wij for
i=1 to 16; j = 1 to n
Step 7: Activate the hidden layers
Hiddeni =1/1+e-H for i = 1 to n (number of hidden nodes)
Step 8: Compute the output layer
effort = bias2 + Hidden1*wh1+...+Hiddenn*whn
Step 9: Compute error
error = ln(Actual Effort) – efforts
Step 10: Compute Δw
Step 11: Update the weights using Δw
Step 12: Test stopping condition
Repeat Step 13 and 14 for all projects in test data
Step 13: Compute effort of testing data

Qamar et al /International Journal of Advanced and Applied Sciences, 5(11) 2018, Pages: 33-39

36

Pick weight from weight associative memory of
that training project which gives effort closest to
actual effort.

Learning rate α = 0.003 and stopping condition is
error should be less than some threshold.

Initially, all weights (input and hidden layer) and
bias are set on 1. For each training data step 6 to step
12 are perform, in these step weights are being
updating and saving in a weight associative memory.
In step 6 and 7 weights of every connection of input
and hidden layer is computed respectively. In step 8,
effort is computed with the help of input and hidden
layer weights. From step 9 to 12, weights are being
updating while error (actual – estimated effort) is
greater than defined threshold. In step 13, estimated
effort is computed for training data, for this purpose
weight associative memory is used. The accuracy of
estimated effort is calculated by using the most
popular method such as Magnitude Relative Error
(MRE) and Mean Magnitude Relative Error (MMRE)
(Briand et al., 1999) which are described in Eq. 3 and
Eq. 4.

MRE =
|Actual Effort − Estimated Effort|

Actual Effort
∗ 100 (3)

MMRE =
1

N
∑ 𝑀𝑅𝐸i𝑛

𝑥=1 (4)

5. Experimental setup

The dataset was collected from different software
houses and freelancers to analyze and implement the
effort estimation model. The companies provide us
information on a condition of hiding their identity
and to use this information just for research
purpose. The Fig. 3 depicts the details of dataset
collected from different sources. Around 40% of the
data sets were collected from different software
houses of Pakistan, more particularly from Lahore.
The other sources of dataset (17%) were the
freelancers working in virtual teams for clients.
Around 43% of projects data was taken
anonymously (developers did not disclosed their
affiliation with any company).

The total of 164 projects dataset was divided into
training (61%) and testing (39%) parts as Neural
Network works in two modes: training and testing
mode. During training mode, we used training data
to adjust the weights. While the testing mode will
validate either network is trained properly or not on
provided testing dataset. The single instance of data
set (a project) contains project name (project
pseudonym), its launching year, values of its 9 cost
drivers in term of very low, low, nominal, high and
very high, occurrences of operands and operators in
a project, distinct operands and operators and its
actual effort in person months was given. Each
attribute is comma separated. Table 3 demonstrates
the values of parameters used to implement the feed
forward neural network.

Fig. 3: Sources of dataset collected

Table 3: Experimental Values taken for implementation

Parameters Values
Convergence Objective 0.01

Learning Rate 0.006
Architecture Used Feed Forward Neural Network

Training Method Used
Trainlm (Levenberg-

Marquardt)
No. of Training Data 100
No. of Testing Data 64

Function Used Sigmoid

6. Results and analysis

The overall results for 64 projects (Testing
Dataset) are presented in Table 4. The second
column represents the actual effort taken from
software houses, anonymous sources and
freelancers with collected dataset. The 3rd and 4th
columns compare the estimated effort using Neuro-
Web and WebMo respectively. The results show that
the Neuro-Web performed much better than WebMo
as Neuro-Web estimated effort was much closer to
the actual effort. The last two columns of the table
calculate the MRE of Neuro-Web and WebMo for
estimated effort. It can be seen in table 4 that mean
relative error of Neuro-Web is much lesser than
WebMo and ultimately the MMRE too. The overall
results demonstrate that Neuro-Web performed
much better than WebMo. Fig. 4 depicts the
comparative analysis between actual efforts, Neuro-
Web’s estimated effort and estimated effort of
WebMo. It can be shown though figure that
estimated effort of Neuro-Web is much closer to the
actual effort when comparing with WebMo.

7. Conclusion

In this paper, we have proposed a novel non-
algorithmic model Neuro-Web for effort estimation
of web-based projects. The proposed model is
calibrated with help of 164 real life project’s dataset.
The model is based on artificial neural network that
need to be trained like human brain. The model used
WebMo model parameters as input. The estimated
effort of proposed model was compared with actual
effort and the effort measured using WebMo model.
The estimated effort using Neuro-Web was close to

Qamar et al /International Journal of Advanced and Applied Sciences, 5(11) 2018, Pages: 33-39

37

actual effort. The MMRE of Neuro-Web was just 9.92% while the MMRE of WebMo was 26.27%.

Table 4: Comparison between actual, neuro-web and WebMo based on effort and MRE

Sr# Actual Effort
Effort using

WebMo
Estimated Effort using

Neuro-Web
MRE % using

WebMo
MRE % using
Neuro-Web

1 51.00 55.76 31.68 9.33 37.88
2 61.00 60.50 61.39 0.83 0.63
3 43.00 48.48 31.68 12.73 26.32
4 61.00 59.58 61.39 2.32 0.63
5 450.00 399.32 439.71 11.26 2.29
6 43.00 5.40 31.68 87.44 26.32
7 115.00 62.65 117.82 45.52 2.45
8 1250.00 1011.53 1235.97 19.08 1.12
9 2450.00 2640.28 2376.81 7.77 2.99

10 1400.00 1394.60 1354.74 0.39 3.23
11 980.00 1343.16 963.57 37.06 1.68
12 410.00 518.45 415.92 26.45 1.44
13 2400.00 2575.87 2376.81 7.33 0.97
14 425.00 587.50 439.71 38.24 3.46
15 255.00 353.59 236.63 38.66 7.20
16 110.00 66.76 117.82 39.31 7.11
17 575.00 519.05 566.45 9.73 1.49
18 105.00 56.48 117.82 46.21 12.21
19 160.00 290.63 168.32 81.64 5.20
20 780.00 545.38 748.62 30.08 4.02
21 2150.00 1389.96 2099.50 35.35 2.35
22 375.00 478.72 366.33 27.66 2.31
23 285.00 381.15 297.03 33.74 4.22
24 9.00 3.59 24.75 60.08 175.03
25 725.00 737.97 742.77 1.79 2.45
26 452.00 501.90 439.71 11.04 2.72
27 2462.00 1422.79 2376.81 42.21 3.46
28 165.00 87.69 168.32 46.85 2.01
29 152.00 106.33 168.32 30.04 10.73
30 640.00 572.58 629.87 10.53 1.58
31 885.00 582.67 873.53 34.16 1.30
32 450.00 648.84 439.71 44.19 2.29
33 195.00 105.60 207.92 45.85 6.63
34 580.00 579.16 566.45 0.15 2.34
35 440.00 567.44 439.71 28.96 0.07
36 73.00 73.73 61.39 0.99 15.91
37 303.00 404.78 297.03 33.59 1.97
38 302.00 391.83 297.03 29.75 1.65
39 242.00 290.02 236.63 19.84 2.22
40 605.00 540.16 594.17 10.72 1.79
41 760.00 589.15 742.77 22.48 2.27
42 1220.00 1116.99 1235.97 8.44 1.31
43 100.00 99.96 117.82 0.04 17.82
44 412.00 494.61 415.92 20.05 0.95
45 4180.00 2504.25 4129.81 40.09 1.20
46 1775.00 1127.78 1755.94 36.46 1.07
47 1650.00 1143.18 1755.94 30.72 6.42
48 1950.00 1066.52 1927.16 45.31 1.17
49 705.00 541.08 713.03 23.25 1.14
50 1350.00 982.52 1354.74 27.22 0.35
51 481.00 474.53 475.38 1.35 1.17
52 600.00 453.25 594.17 24.46 0.97
53 432.00 408.68 439.71 5.40 1.78
54 650.00 284.35 629.87 56.25 3.10
55 480.00 372.26 475.38 22.45 0.96
56 13.00 5.54 31.68 57.39 143.72
57 39.00 36.35 31.68 6.80 18.76
58 1255.00 1471.57 1235.97 17.26 1.52
59 100.00 99.96 117.82 0.04 17.82
60 415.00 497.14 415.92 19.79 0.22
61 85.00 62.11 89.11 26.93 4.83
62 66.00 58.53 61.39 11.31 6.99
63 176.00 73.22 168.32 58.40 4.37
64 651.00 515.83 629.87 20.76 3.25

% MMRE 26.27 9.92

As of now, we have taken this dataset from
anonymous sources, Pakistani software houses and
freelancers only. In future, this model can be
evaluated using the datasets taken from different
international software houses. Similarly, instead of
comparing this model with WebMo, this could be
compared with other web effort estimation

tools/models. The model can be calibrated by using
different company sizes, different areas of web based
applications and different number of datasets. Last,
but not the least, the research can be extended for
different other non-algorithmic techniques like
Fuzzy techniques, Swam Intelligence and Genetic
Algorithms.

Qamar et al /International Journal of Advanced and Applied Sciences, 5(11) 2018, Pages: 33-39

38

Fig 4: Comparison between actual effort, estimated WebMo effort and neuro-web effort

References

Aghazadeh M and Gharehchopogh SF (2018). A new hybrid model
of multi-layer perceptron artificial neural network and genetic
algorithms in web design management based on CMS. Journal
of AI and Data Mining, 6(2): 409-415.

Bhatnagar R, Bhattacharjee V, and Ghose MK (2010). Software
development effort estimation–neural network vs. regression
modeling approach. International Journal of Engineering
Science and Technology, 2(7): 2950-2956.

Bhuyan MK, Mohapatra DP, and Sethi S (2014). A survey of
computational intelligence approaches for software reliability
prediction. ACM SIGSOFT Software Engineering Notes, 39(2):
1-10.

Boehm BW (1984). Software engineering economics. IEEE
Transactions on Software Engineering, 10(1): 4-21.

Briand LC and Wieczorek I (2002). Resource estimation in
software engineering. In: Marciniak JJ (Ed.), Encyclopedia of
software engineering: 1160-1196. John Wiley and Sons,
Hoboken, New Jersey, USA.

Briand LC, El Emam K, Surmann D, Wieczorek I, and Maxwell KD
(1999). An assessment and comparison of common software
cost estimation modeling techniques. In the 21st international
conference on Software engineering, ACM, Los Angeles, USA,
313-322.

Clark B, Devnani-Chulani S, and Boehm B (1998). Calibrating the
COCOMO II post-architecture model. In the 20th international
conference on Software engineering, IEEE Computer Society,
Kyoto, Japan, 477-480.

Costagliola G, Di Martino S, Ferrucci F, Gravino C, Tortora G, and
Vitiello G (2006). Effort estimation modeling techniques: a
case study for web applications. In the 6th international
conference on Web engineering, ACM, New York, USA: 9-16.

Finnie GR, Wittig GE, and Desharnais JM (1997). A comparison of
software effort estimation techniques: using function points
with neural networks, case-based reasoning and regression
models. Journal of Systems and Software, 39(3): 281-289.

Halstead MH (1977). Elements of software science: Operating and
programming systems series. Elsevier Science Inc., New York,
USA.

Hill P (2010). Practical software project estimation. Tata McGraw-
Hill Education, New York, USA.

Martin CL, Pasquier JL, Yanez CM, and Tornes AG (2005). Software
development effort estimation using fuzzy logic: a case study.
In the 6th Mexican International Conference on Computer
Science, IEEE, Puebla, Mexico: 113-120.

Mendes E (2007). Predicting web development effort using a
bayesian network. In the 11th International Conference on
Evaluation and Assessment in Software Engineering, British
Computer Society: 83-93.

Mukhopadhyay T, Vicinanza SS, and Prietula MJ (1992).
Examining the feasibility of a case-based reasoning model for
software effort estimation. MIS Quarterly, 16(2): 155-171.

Panda A (2015). Effort estimation of agile and web-based software
using artificial neural networks. M.Sc. Thesis, Department of
Computer Science and Engineering National Institute of
Technology, Rourkela, India.

Putnam LH (1978). A general empirical solution to the macro
software sizing and estimating problem. IEEE Transactions on
Software Engineering, SE4(4): 345-361.

Qamar N, Akhtar N, and Younas I (2018). Comparative analysis of
evolutionary algorithms for multi-objective travelling
salesman problem. International Journal of Advanced
Computer Science and Applications, 9(2): 371-379.

Reddy S, Raju K, Srinivas T, and Devi GL (2007). A neural network
approach for web cost estimation. In the 11th IASTED
International Conference on Software Engineering and
Applications, ACTA Press, Calgary, Canada: 37-41.

Reifer DJ (2000). Web development: estimating quick-to-market
software. IEEE Software, 17(6): 57-64.

Richard L (1987). An introduction to computing with neural nets.
IEEE Assp Magazine, 4(2): 4-22.

Ruhe M, Jeffery R, and Wieczorek I (2003). Cost estimation for
web applications. In the 25th International Conference on

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65

Comparision between WebMo and Neuro-Web

Actual Effort Effort using WebMo Estimated Effort using Neuro-Web

Qamar et al /International Journal of Advanced and Applied Sciences, 5(11) 2018, Pages: 33-39

39

Software Engineering, IEEE Computer Society, Kyoto, Japan:
285-294.

Saleh K (2017). Global online retail spending – statistics and
trends. Available online at: https://www.invespcro.com/blog/
global-online-retail-spending-statistics-and-trends

Santani D, Bundele M, and Rijwani P (2014). Artificial neural
networks for software effort estimation: A review.
International Journal of Advances in Engineering Science and
Technology, 3(3): 193-200.

Sentas P, Angelis L, Stamelos I, and Bleris G (2005). Software
productivity and effort prediction with ordinal regression.
Information and Software Technology, 47(1): 17-29.

Sharma R (2013). Survey: On algorithmic models for estimating
software effort. European International Journal of Science and
Technology, 2(3): 164-169.

Sheta A, Rine D, and Ayesh A (2008). Development of software
effort and schedule estimation models using soft computing

techniques. In the IEEE Congress on Evolutionary
Computation: IEEE World Congress on Computational
Intelligence, IEEE, Hong Kong, China: 1283-1289.

Singh BK and Misra AK (2012). Software effort estimation by
genetic algorithm tuned parameters of modified constructive
cost model for nasa software projects. International Journal of
Computer Applications, 59(9): 22-26.

Srinivasan K and Fisher D (1995). Machine learning approaches to
estimating software development effort. IEEE Transactions on
Software Engineering, 21(2): 126-137.

Tronto BIF, da Silva JDS, and Sant’Anna N (2008). An investigation
of artificial neural networks based prediction systems in
software project management. Journal of Systems and
Software, 81(3): 356-367.

Zhong S, Khoshgoftaar TM, and Seliya N (2004). Analyzing
software measurement data with clustering techniques. IEEE
Intelligent Systems, 19(2): 20-27.

	Efficient effort estimation of web based projects using neuro-web
	1. Introduction
	2. Background
	2.1. WebMo model
	2.2. Artificial neural networks

	3. Literature review
	4. Proposed methodology
	5. Experimental setup
	6. Results and analysis
	7. Conclusion
	References

