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The effort estimation needs to be done at early stages for successful delivery 
of software. Numerous models have been developed to estimate software 
effort during the last decades, but effort estimation of a software project is 
still a challenging task and in the case of web based projects, it is even 
harder. The selection of programming language and use of different type of 
objects i.e. hyperlinks, graphics, and scripts etc. make the web effort 
estimation process really complex. An estimation model “WebMo”, proposed 
to estimate the effort of web based projects inspired by COCOMO. This 
research presents a non-algorithmic model named “Neuro-Web” based on 
Artificial Neural Networks (ANN). The proposed model will use the WebMo 
parameters as input. These parameters include web application size, 
productivity coefficients, and 9 different cost drivers. This proposed model is 
calibrated using the dataset of 164 real-life web applications developed by 
different freelancers and software houses. The “Neuro-Web” model is 
compared with the existing model “WebMo” and results reveal that Neuro-
Web performs better than “WebMo”. The MMRE of the proposed method is 
just 9.92% as compared to 26.27% for WebMo. 
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1. Introduction 

*Effort estimation of a project is a perplexed 
activity that needs to be done at early stage of the 
project development. It is the process of forecasting 
the expected development cost and time. Correct 
estimation is critically important as under-
estimation can results in low quality of the project 
and eventually leads to the project failure. On the 
other hand, the over-estimation of a project can be 
source of business loss (Hill, 2010).  

The software effort estimation can be performed 
by algorithmic (Sharma, 2013) and non-algorithmic 
methods. The algorithmic methods include COCOMO 
model (Boehm, 1984), SLIM model (Putnam, 1978) 
and Function Point based model (Sheta et al., 2008). 
These methods use different type of parameters. The 
parameter values are provided to mathematical 
formulas to foresee software effort. The limitations 
of these algorithmic methods include its source of 
estimation (SRS document), inappropriate 
measurement of project size and difficulty in 
modeling the complex inherent relationships (Clark 
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et al., 1998). Due to these deficiencies, the 
researchers focused on non-algorithmic methods 
based on Computational Intelligence i.e. Genetic 
Algorithms (Singh and Misra, 2012), Fuzzy Logic 
(Martin et al., 2005) and Artificial Neural Networks 
(ANN) (Santani et al., 2014). The ANN has the 
capability to learn from test data and produce output 
like a human brain. It can also model the complex 
relationships between dependent and independent 
variables effectively (Briand and Wieczorek, 2002). 

Along with traditional software, the effort 
estimation of web based projects is also critically 
important. The continuously increasing online retail 
sales ($2,197 trillion in 2017) (Saleh, 2017) reflects 
the importance of successful web development and 
accurate effort estimation is the foundation of this 
success. The demand of being quick-to-market 
makes web development different from traditional 
one. The other difference includes its complex 
nature, small team size, use of multiple techniques 
(scripts, API’s and graphics etc.) (Reifer, 2000) and 
ad-hoc processes. Despite of these differences, a very 
few models have been proposed to exclusively deal 
with web based projects. One of those is WebMo, 
proposed by Bohem (1984). This model uses the 
Web Objects metric for effort estimation. The Web 
Objects include; building blocks, web components, 
graphics or multimedia files etc. (Reifer, 2000). 
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The above mentioned limitations of algorithmic 
methods attracted us to look for non-algorithmic 
methods to estimate effort of web based projects. 
Very few researchers had attempted ANN for 
estimation web based project. This motivated us to 
propose a novel non-algorithmic model called 
Neuro-Web. The model has been verified with the 
help of 164 real life web based projects.  

The remaining paper is structured as follows: 
Section 2 discusses the Background, Section 3 
describes the Literature Review, Section 4 discusses 
the Proposed Methodology, Section 5 describes the 
Experimental Setup, Section 6 presents the Results 
and Analysis and finally the section 7 concludes the 
paper with some future directions. 

2. Background 

2.1. WebMo model 

Boehm (1984) introduced the WebMo model for 
effort estimation of web based projects (Reifer, 
2000). The WebMo model is derived from COCOMO; 
a widely used model for effort estimation of 
traditional projects. The core difference between 
WebMo and COCOMO is number of cost drivers and 
the sizing metrics. The COCOMO has 15 cost drivers 
and WebMo deals with 9 cost drivers. The project 
size is calculated in Source Lines of Code (SLOC) for 
COCOMO whereas the WebMo uses the Web Objects 
metric for size calculation. The Web Objects 
includes; API’s, JavaScript Applet, Graphics, 
Hyperlinks, application points, components or 
multimedia files etc. The size of the project is 

calculated with help of Halstead (1977)’s equation as 
given below (see Eq. 1). The volume is computed to 
calculate the size of web project (Halstead, 1977). 

 
𝑉∗ = 𝑁𝑙𝑜𝑔2(𝑛) = (𝑁1∗ + 𝑁2∗)𝑙𝑜𝑔2(𝑛1∗ + 𝑛2∗)              (1) 

 
where, N is No. of occurrences of web objects and 
operations on those web objects, n is No. of unique 
web objects and operations, N1* is total occurrences 
of web objects, N2* is total occurrences of operations 
on web objects, n1* is No. of distinct web objects, n2* 
is No. of distinct operations on web objects, and V* is 
volume/size of the project. 

Eq. 2 is used to calculate the effort (in person-
months) of the Web based project. 

 
𝐸𝑓𝑓𝑜𝑟𝑡 = 𝐴 ∏ 𝑐𝑑𝑖(𝑆𝑖𝑧𝑒)𝑃19

𝑖=1                   (2) 
 

where, Size is Size as calculated from Halstead’s 
equation, Cd is 9 cost drivers, A is constants, and P1 
is power laws. 

Table 1 contains the values of A and P1 for 
different categories of web based projects. Table 2 
describes the details of 9 cost drives. The value of 
cost driver can be measured in an ordinal scale (Very 
Low, Low, Nominal, High and Very High). 

 
Table 1: Web Development Model Parameter Values 

(Reifer, 2000) 
Domains A P1 

Web-based electronic 2.3 1.05 
Financial/trading applications 2.7 1.05 

Business-to-business applications 2.0 1.00 
Web-based information utilities 2.1 1.00 
*Either 0.5 or 0.33 depending on the scaling (>40 Web Objects) 

 
Table 2: WebMoEffort Multipliers/Cost Drivers (Reifer, 2000) 

Cost Driver VL L N H VH 
Product Reliability and Complexity (RCPX) 0.63 0.85 1.0 1.30 1.67 

Platform Difficulty (PDIF) 0.75 0.87 1.00 1.21 1.41 
Personnel Capability (PERS) 1.55 1.35 1.00 0.75 0.58 

Personnel Experience (PREX) 1.35 1.19 1.00 0.87 0.71 
Facilities (FCIL) 1.35 1.13 1.00 0.85 0.68 
Schedule (SCED) 1.35 1.15 1.00 1.05 1.10 

Teamwork (TEAM) 1.45 1.31 1.00 1.75 1.62 
Process Efficiency (PEFF) 1.35 1.20 1.00 0.85 0.65 

Reuse (RUSE) - - 1.00 - - 
      

2.2. Artificial neural networks 

Artificial Neural Network (ANN) is a network 
consists of artificial neurons (Richard, 1987). These 
neurons are connected to each other with help of 
connection links as shown in Fig. 1. Some weights 
are associated with each connection. These weights 
contain information about input signals which is 
used to solve some specific problem. In ANN, the 
nodes are organized in different layers. These layers 
are consisted of input layer, hidden layer(s) and 
output layer. The inputs need to be provided to each 
neuron. Every neuron has its internal state called 
activation level of neuron. The inputs with 
aggregated weights, measured on some threshold 
are provided to activation function to produce the 
output of that neuron. A large number of activation 
functions are used depending on nature of problem, 

like Linear, Sigmoid, Gaussian, Tangent, Hyperbola, 
Parabola etc. 

 

 
Fig. 1: Artificial neural network basic model 

 
The ANN needs to be trained like human brain. A 

large number of algorithms exist for training 
purpose of neural networks, but which algorithm 
will best works for some artificial neural network, 
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depends on the architecture of that network. The 
most widely used topology or architecture of ANN is 
the feed-forward neural networks (FFNN). The 
information flows from input neurons to output 
neurons and never goes in reverse direction in feed-
forward network. The intermediate layers called 
hidden layers can be used to increase the 
dimensionality of neural network (Richard, 1987). 

3. Literature review 

One of the important needs of software project 
management is precise, consistent and accurate 
prediction of resources. Researchers are working in 
this direction from last twenty years but still many 
challenges are associated with cost and effort 
prediction (Bhatnagar et al., 2010).  

The researchers more focus was on minimizing 
the subjectivity of traditional software estimation 
methods. A very few researchers took web based 
project estimation under consideration. There are 
different algorithmic, regression-based and 
parametric models like COCOMO model (Boehm, 
1984), SLIM’s model (Putnam, 1978) and Function 
Point Analysis (Sheta et al., 2008) and Ordinal 
Regression Model (Sentas et al., 2005) for traditional 
software. There are also non-algorithmic techniques 
exist for software effort estimation. These 
techniques include; case base reasoning 
(Mukhopadhyay et al., 1992), clustering (Zhong et al., 
2004), artificial neural networks (ANN) (Richard, 
1987) and genetic algorithms (GA) (Martin et al., 
2005). Due to the successful application of genetic 
algorithms (Qamar et al., 2018) and artificial neural 
networks (Richard, 1987) in different domains (i.e. 
medicine, geology, engineering, image processing, 
physics, classification and control problems), It grabs 
the attention of more researchers to use this for 
software effort estimation and many researchers 
used this in different areas of software project 
management.   

Tronto et al. (2008) and Bhuyan et al. (2014) 
evaluated the use of artificial neural networks as 
prediction of cost and effort in software project 
management. Furthermore, Finnie et al. (1997) 
reported that back propagation learning algorithm 
on multilayer perceptron for software effort 
prediction. Srinivasan and Fisher (1995) also used 
multilayer perceptron for effort prediction on 
COCOMO dataset.  

Ruhe et al. (2003) used hybrid techniques for 
web based projects estimation. He used small 
dataset from industry. The multivariable regression 
and expert judgment were the used techniques to 
estimate effort. Later, Costagliola et al. (2006) 
performed the comparison between two types of 
web based measures for size estimation. Mendes 
(2007) used Bayesian Network for effort estimation 
and found it better than regression-based model. 
Mendes (2007), further used Classification and 
Regression Trees (CART) and case-based reasoning 
(CBR) techniques for web based project estimation. 
The WebMo model (Reifer, 2000) proposed by 

Boehm (1984) was also used to estimate the effort of 
web projects. 

Reddy et al. (2007) proposed an approach for 
web effort estimation using ANN in 2007. Later on, 
Panda (2015) used artificial neural networks to 
estimate effort of Agile and web based projects in 
2015. The results showed that ANN performed 
better than previous techniques. Recently,  
Aghazadeh and Gharehchopogh (2018) proposed a 
Hybrid model of Multi-layer Perceptron Artificial 
Neural Network and Genetic Algorithms 
in Web Design Management Based on CMS. 

4. Proposed methodology 

The WebMo is the algorithmic model which is 
developed for web-based projects. We had rectified 
this model in Multilayer Artificial Neural Network by 
providing the parameters of WebMo model to the 
ANN as input and estimated effort was measured by 
training the ANN. A detailed comparison between 
actual efforts, WebMo’s estimated and proposed 
model’s (Neuro-Web) effort was conducted. 

A Feed Forward Neural Network was designed 
(as shown in Fig. 2) which is taking 9 cost drivers 
and calculated size in its input neurons layer and 
there are five neurons in hidden neuron layer and 
one output neuron. The number of neurons in 
hidden layer was selected after an iterative testing 
process by keeping in view that more neuron can 
cause the issue of over fitting. 

 
Fig. 2: Architecture of ANN used for neuro-web model 

 
The steps of Neuro-Web Model are given below: 
 

Step 1: Get values against all cost drivers 
Step 2: Initialize the weights, biases and number of nodes in 
hidden layer.wi=whi=1; biasi=1        
Step 3: Set learning rate α = 0.003 
Step 4: Test stopping condition for false, 
Repeat the steps 5 to 12 
Step 5: For each training data, 
Repeat the steps 6 to 12 
Step 6: Compute the hidden layers Hiddenj = b1 +Σ Xi*wij for 
i=1 to 16; j = 1 to n 
Step 7: Activate the hidden layers 
Hiddeni =1/1+e-H for i = 1 to n (number of hidden nodes) 
Step 8: Compute the output layer 
effort = bias2 + Hidden1*wh1+...+Hiddenn*whn 
Step 9: Compute error 
error = ln(Actual Effort) – efforts 
Step 10: Compute Δw 
Step 11: Update the weights using Δw 
Step 12: Test stopping condition 
Repeat Step 13 and 14 for all projects in test data 
Step 13: Compute effort of testing data  
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Pick weight from weight associative memory of 
that training project which gives effort closest      to 
actual effort. 

Learning rate α = 0.003 and stopping condition is 
error should be less than some threshold. 

Initially, all weights (input and hidden layer) and 
bias are set on 1. For each training data step 6 to step 
12 are perform, in these step weights are being 
updating and saving in a weight associative memory. 
In step 6 and 7 weights of every connection of input 
and hidden layer is computed respectively. In step 8, 
effort is computed with the help of input and hidden 
layer weights. From step 9 to 12, weights are being 
updating while error (actual – estimated effort) is 
greater than defined threshold. In step 13, estimated 
effort is computed for training data, for this purpose 
weight associative memory is used. The accuracy of 
estimated effort is calculated by using the most 
popular method such as Magnitude Relative Error 
(MRE) and Mean Magnitude Relative Error (MMRE) 
(Briand et al., 1999) which are described in Eq. 3 and 
Eq. 4.  

 

MRE =
|Actual Effort − Estimated Effort|

Actual Effort
∗ 100                           (3) 

 

MMRE =
1

N
∑ 𝑀𝑅𝐸i𝑛

𝑥=1                                                              (4) 

5. Experimental setup 

The dataset was collected from different software 
houses and freelancers to analyze and implement the 
effort estimation model. The companies provide us 
information on a condition of hiding their identity 
and to use this information just for research 
purpose. The Fig. 3 depicts the details of dataset 
collected from different sources. Around 40% of the 
data sets were collected from different software 
houses of Pakistan, more particularly from Lahore. 
The other sources of dataset (17%) were the 
freelancers working in virtual teams for clients. 
Around 43% of projects data was taken 
anonymously (developers did not disclosed their 
affiliation with any company).  

The total of 164 projects dataset was divided into 
training (61%) and testing (39%) parts as Neural 
Network works in two modes: training and testing 
mode. During training mode, we used training data 
to adjust the weights. While the testing mode will 
validate either network is trained properly or not on 
provided testing dataset. The single instance of data 
set (a project) contains project name (project 
pseudonym), its launching year, values of its 9 cost 
drivers in term of very low, low, nominal, high and 
very high, occurrences of operands and operators in 
a project, distinct operands and operators and its 
actual effort in person months was given. Each 
attribute is comma separated. Table 3 demonstrates 
the values of parameters used to implement the feed 
forward neural network.  

 

 
Fig. 3: Sources of dataset collected 

 
Table 3: Experimental Values taken for implementation 

Parameters Values 
Convergence Objective 0.01 

Learning Rate 0.006 
Architecture Used Feed Forward Neural Network 

Training Method Used 
Trainlm (Levenberg-

Marquardt) 
No. of Training Data 100 
No. of Testing Data 64 

Function Used Sigmoid 

6. Results and analysis 

The overall results for 64 projects (Testing 
Dataset) are presented in Table 4. The second 
column represents the actual effort taken from 
software houses, anonymous sources and 
freelancers with collected dataset. The 3rd and 4th 
columns compare the estimated effort using Neuro-
Web and WebMo respectively. The results show that 
the Neuro-Web performed much better than WebMo 
as Neuro-Web estimated effort was much closer to 
the actual effort. The last two columns of the table 
calculate the MRE of Neuro-Web and WebMo for 
estimated effort. It can be seen in table 4 that mean 
relative error of Neuro-Web is much lesser than 
WebMo and ultimately the MMRE too. The overall 
results demonstrate that Neuro-Web performed 
much better than WebMo. Fig. 4 depicts the 
comparative analysis between actual efforts, Neuro-
Web’s estimated effort and estimated effort of 
WebMo. It can be shown though figure that 
estimated effort of Neuro-Web is much closer to the 
actual effort when comparing with WebMo. 

7. Conclusion 

In this paper, we have proposed a novel non-
algorithmic model Neuro-Web for effort estimation 
of web-based projects. The proposed model is 
calibrated with help of 164 real life project’s dataset. 
The model is based on artificial neural network that 
need to be trained like human brain. The model used 
WebMo model parameters as input. The estimated 
effort of proposed model was compared with actual 
effort and the effort measured using WebMo model. 
The estimated effort using Neuro-Web was close to 
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actual effort. The MMRE of Neuro-Web was just 9.92% while the MMRE of WebMo was 26.27%. 
 

Table 4: Comparison between actual, neuro-web and WebMo based on effort and MRE 

Sr# Actual Effort 
Effort using 

WebMo 
Estimated Effort using 

Neuro-Web 
MRE % using 

WebMo 
MRE % using 
Neuro-Web 

1 51.00 55.76 31.68 9.33 37.88 
2 61.00 60.50 61.39 0.83 0.63 
3 43.00 48.48 31.68 12.73 26.32 
4 61.00 59.58 61.39 2.32 0.63 
5 450.00 399.32 439.71 11.26 2.29 
6 43.00 5.40 31.68 87.44 26.32 
7 115.00 62.65 117.82 45.52 2.45 
8 1250.00 1011.53 1235.97 19.08 1.12 
9 2450.00 2640.28 2376.81 7.77 2.99 

10 1400.00 1394.60 1354.74 0.39 3.23 
11 980.00 1343.16 963.57 37.06 1.68 
12 410.00 518.45 415.92 26.45 1.44 
13 2400.00 2575.87 2376.81 7.33 0.97 
14 425.00 587.50 439.71 38.24 3.46 
15 255.00 353.59 236.63 38.66 7.20 
16 110.00 66.76 117.82 39.31 7.11 
17 575.00 519.05 566.45 9.73 1.49 
18 105.00 56.48 117.82 46.21 12.21 
19 160.00 290.63 168.32 81.64 5.20 
20 780.00 545.38 748.62 30.08 4.02 
21 2150.00 1389.96 2099.50 35.35 2.35 
22 375.00 478.72 366.33 27.66 2.31 
23 285.00 381.15 297.03 33.74 4.22 
24 9.00 3.59 24.75 60.08 175.03 
25 725.00 737.97 742.77 1.79 2.45 
26 452.00 501.90 439.71 11.04 2.72 
27 2462.00 1422.79 2376.81 42.21 3.46 
28 165.00 87.69 168.32 46.85 2.01 
29 152.00 106.33 168.32 30.04 10.73 
30 640.00 572.58 629.87 10.53 1.58 
31 885.00 582.67 873.53 34.16 1.30 
32 450.00 648.84 439.71 44.19 2.29 
33 195.00 105.60 207.92 45.85 6.63 
34 580.00 579.16 566.45 0.15 2.34 
35 440.00 567.44 439.71 28.96 0.07 
36 73.00 73.73 61.39 0.99 15.91 
37 303.00 404.78 297.03 33.59 1.97 
38 302.00 391.83 297.03 29.75 1.65 
39 242.00 290.02 236.63 19.84 2.22 
40 605.00 540.16 594.17 10.72 1.79 
41 760.00 589.15 742.77 22.48 2.27 
42 1220.00 1116.99 1235.97 8.44 1.31 
43 100.00 99.96 117.82 0.04 17.82 
44 412.00 494.61 415.92 20.05 0.95 
45 4180.00 2504.25 4129.81 40.09 1.20 
46 1775.00 1127.78 1755.94 36.46 1.07 
47 1650.00 1143.18 1755.94 30.72 6.42 
48 1950.00 1066.52 1927.16 45.31 1.17 
49 705.00 541.08 713.03 23.25 1.14 
50 1350.00 982.52 1354.74 27.22 0.35 
51 481.00 474.53 475.38 1.35 1.17 
52 600.00 453.25 594.17 24.46 0.97 
53 432.00 408.68 439.71 5.40 1.78 
54 650.00 284.35 629.87 56.25 3.10 
55 480.00 372.26 475.38 22.45 0.96 
56 13.00 5.54 31.68 57.39 143.72 
57 39.00 36.35 31.68 6.80 18.76 
58 1255.00 1471.57 1235.97 17.26 1.52 
59 100.00 99.96 117.82 0.04 17.82 
60 415.00 497.14 415.92 19.79 0.22 
61 85.00 62.11 89.11 26.93 4.83 
62 66.00 58.53 61.39 11.31 6.99 
63 176.00 73.22 168.32 58.40 4.37 
64 651.00 515.83 629.87 20.76 3.25 

 
% MMRE 26.27 9.92 

 

As of now, we have taken this dataset from 
anonymous sources, Pakistani software houses and 
freelancers only. In future, this model can be 
evaluated using the datasets taken from different 
international software houses. Similarly, instead of 
comparing this model with WebMo, this could be 
compared with other web effort estimation 

tools/models.  The model can be calibrated by using 
different company sizes, different areas of web based 
applications and different number of datasets. Last, 
but not the least, the research can be extended for 
different other non-algorithmic techniques like 
Fuzzy techniques, Swam Intelligence and Genetic 
Algorithms. 
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Fig 4: Comparison between actual effort, estimated WebMo effort and neuro-web effort 
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